You updated your password.

Reset Password

Enter the email address you used to create your account. We will email you instructions on how to reset your password.

Forgot Your Email Address? Contact Us

Reset Your Password

SHOW
SHOW

The Queen of the Sciences: A History of Mathematics

Embark on a supreme intellectual adventure with an award-winning Professor of Mathematics.
Ask anything about The Great Courses
 
 

Overview

For at least 4,000 years of recorded history, humans have engaged in the study of mathematics. Our progress in this field is a gripping narrative that describes a never-ending search for hidden patterns in numbers, a philosopher's quest for the ultimate meaning of mathematical relationships, and a chronicle of amazing progress. Embark on a supreme intellectual adventure with The Queen of the Sciences: A History of Mathematics, 24 illuminating lectures taught by award-winning Professor of Mathematics David M. Bressoud.

About

David M. Bressoud

The stories of mathematics reveal it to be a creative endeavor done by real people who struggled to discover the underlying patterns of nature on which we have built our modern world.

INSTITUTION

Macalester College
View Full Details

By This Professor

The Queen of the Sciences: A History of Mathematics
854
What Is Mathematics?

01: What Is Mathematics?

You explore the peculiar nature of mathematics. Why is it that abstractions that arose in one context can lead to unexpected insights in another? This lecture closes with a look at the major conceptual advances that are the focus of this course.

32 min
Babylonian and Egyptian Mathematics

02: Babylonian and Egyptian Mathematics

Egyptian and Mesopotamian mathematics were well developed by the time of the earliest records from the 2nd millennium B.C. Both knew how to find areas and volumes. The Babylonians solved quadratic equations using geometric methods and knew the Pythagorean theorem.

30 min
Greek Mathematics—Thales to Euclid

03: Greek Mathematics—Thales to Euclid

This lecture surveys more than 300 years of Greek mathematics, from Thales and Pythagoras to Euclid. Euclid's "Elements" covers much of the mathematical knowledge of the time and is considered the most important book of mathematics ever written.

30 min
Greek Mathematics—Archimedes to Hypatia

04: Greek Mathematics—Archimedes to Hypatia

Foremost among Greek mathematicians was Archimedes, who developed methods equivalent to the modern technique of integration. Hypatia was the first woman known to have made important contributions to mathematics and was one of the last scholars of the famous Museion at Alexandria.

31 min
Astronomy and the Origins of Trigonometry

05: Astronomy and the Origins of Trigonometry

The origins of trigonometry lie in astronomy, especially in finding the length of the chord that connects the endpoints of an arc of a circle. Hipparchus discovered a solution to this problem, that was later refined by Ptolemy who authored the great astronomical work the "Almagest."

31 min
Indian Mathematics—Trigonometry Blossoms

06: Indian Mathematics—Trigonometry Blossoms

You journey through the Gupta Empire and the great period of Indian mathematics that lasted from A.D. 320 to 1200. Along the way, you explore the significant advances that occurred in trigonometry and other mathematical fields.

31 min
Chinese Mathematics—Advances in Computation

07: Chinese Mathematics—Advances in Computation

At least as early as the 3rd century B.C.E., Chinese civil servants had to solve problems in surveying and collecting taxes.

30 min
Islamic Mathematics—The Creation of Algebra

08: Islamic Mathematics—The Creation of Algebra

Algebra was perfected here in the 9th century by the great mathematician Abu Jafar al-Kwarizmi, whose name would become the word "algorithm."

31 min
Italian Algebraists Solve the Cubic

09: Italian Algebraists Solve the Cubic

Mathematics from the Islamic world gradually spread into Europe in the 13th century, starting with Leonardo of Pisa, also known as Fibonacci. Italian mathematicians began to make original contributions in the 16th century when they discovered how to solve the general cubic and quartic equations.

31 min
Napier and the Natural Logarithm

10: Napier and the Natural Logarithm

Working at the turn of the 17th century, John Napier found a way to facilitate calculation for astronomers by inventing logarithms. He also discovered the number now designated by the letter "e."

31 min
Galileo and the Mathematics of Motion

11: Galileo and the Mathematics of Motion

In the early 17th century, Galileo Galilei made important innovations in the study of motion, establishing the pattern of relying on mathematical models to explore physical phenomena. René Descartes and Christiaan Huygens would build directly on his insights.

30 min
Fermat, Descartes, and Analytic Geometry

12: Fermat, Descartes, and Analytic Geometry

A lawyer for whom mathematics was an avocation, Pierre de Fermat was instrumental in the origins of calculus. In 1637, both Fermat and René Descartes published explanations of analytic geometry.

31 min
Newton—Modeling the Universe

13: Newton—Modeling the Universe

Isaac Newton famously said, "If I have seen further, it is by standing on the shoulders of giants." You learn who those giants were and explore Newton's invention of calculus to explain the motions of the heavens in "Principia Mathematica," published in 1687.

29 min
Leibniz and the Emergence of Calculus

14: Leibniz and the Emergence of Calculus

Independently of Newton, Gottfried Wilhelm Leibniz discovered the techniques of calculus in the 1670s, developing the notational system still used today.

31 min
Euler—Calculus Proves Its Promise

15: Euler—Calculus Proves Its Promise

Leonard Euler dominated 18th-century mathematics so thoroughly that his contemporaries believed he had solved all important problems.

30 min
Geometry—From Alhambra to Escher

16: Geometry—From Alhambra to Escher

You look at the influence of geometry on art, exploring the intriguing types of symmetry in Moorish tiling patterns. You also examine the geometrical experiments of M. C. Escher and August Möbius.

31 min
Gauss—Invention of Differential Geometry

17: Gauss—Invention of Differential Geometry

You explore Carl Friedrich Gauss and his interest in geometry on various kinds of surfaces, including his work on the parallel postulate, which laid the foundations for non-Euclidean geometry.

31 min
Algebra Becomes the Science of Symmetry

18: Algebra Becomes the Science of Symmetry

Algebra underwent a fundamental change in the 19th century, becoming a tool for studying transformations. One of the most tragic stories in mathematics involves Evariste Galois, who invented a set of transformations before dying at age 20 in a duel.

30 min
Modern Analysis—Fourier to Carleson

19: Modern Analysis—Fourier to Carleson

By 1800, calculus was well established as a powerful tool for solving practical problems, but its logical underpinnings were shaky. You explore the creative mathematics that addressed this problem in work from Joseph Fourier in the 19th century to Lennart Carleson in the 20th.

30 min
Riemann Sets New Directions for Analysis

20: Riemann Sets New Directions for Analysis

Bernhard Riemann left two famous legacies: the Riemann hypothesis, which deals with the distribution of prime numbers and is the most important open problem in mathematics today, and Riemann's new system of geometry, which Einstein used to develop his general theory of relativity.

31 min
Sylvester and Ramanujan—Different Worlds

21: Sylvester and Ramanujan—Different Worlds

This lecture explores the contrasting careers of James Joseph Sylvester, who was instrumental in developing an American mathematical tradition, and Srinivasa Ramanujan, a poor college dropout from India who produced a rich range of new mathematics during his short life.

30 min
Fermat's Last Theorem—The Final Triumph

22: Fermat's Last Theorem—The Final Triumph

Pierre de Fermat's enigmatic note regarding a proof that he didn't have space to write down sparked the most celebrated search in mathematics, lasting more than 350 years. This lecture follows the route to a proof, finally achieved in the 1990s.

31 min
Mathematics—The Ultimate Physical Reality

23: Mathematics—The Ultimate Physical Reality

Mathematics is the key to realms outside our intuition. You begin with Maxwell's equations and continue through general relativity, quantum mechanics, and string theory to see how mathematics enables us to work with physical realities for which our experience fails us.

31 min
Problems and Prospects for the 21st Century

24: Problems and Prospects for the 21st Century

This last lecture introduces some of the most promising and important questions in the field and examines mathematical challenges from other disciplines, especially genetics.

33 min

We use cookies to improve our services, make personal offers, and enhance your experience. See our Cookie Policy