Nanotechnology is today’s most powerful engine of innovation, turning cutting-edge research into applications at an astonishing rate. Now, in the 24 accessible and visually rich half-hour lectures of Introduction to Nanotechnology: The New Science of Small, get an in-depth explanation of this groundbreaking, interdisciplinary science that operates at the level of atoms and molecules. You’ll learn about once-fantastical applications that are transforming tools, products, and services in the communications, technology, medical, energy, and engineering worlds, and that hold great promise for meeting some of society’s greatest challenges.
Introduction to Nanotechnology: The New Science of Small
Overview
About
Trailer
01: The Crossroads of 21st-Century Science
Join Professors Sargent and Kelley for an initial plunge into the nanoscale, the tiny and mind-blowing realm where revolutionary developments are taking place in applied physics, computer science, biology, and medicine. Begin by probing the size of a nanometer and consider how laws of nature and principles of design change at that scale.
02: The Fundamental Importance of Being Nano
Professor Sargent discusses the rules that govern the nanoscale, where the strange effects of quantum mechanics offer exciting possibilities for engineering. Survey the structure of atoms and molecules and their interactions with light, which are fundamental properties at the nanoscale.
03: From Micro to Nano—Scaling in a Digital World
Trace the evolution of the original computer switches—vacuum tubes—to smaller and smaller components: first to discrete transistors and then to printed circuits that have now shrunk to the nanoscale. Learn how Moore’s law predicts exponential progress in this “race to the bottom.”
04: Leveraging the Nanometer in Computing
Moore’s law forecasts that the number of transistors on an integrated circuit will double roughly every two years. This rule of thumb has held for more than half a century. But how long can it continue? The nanoscale offers new challenges and solutions to the problem of producing ever-smaller circuits.
05: Leveraging the Nanometer in Communications
How did the world become networked so fast? Follow a beam of light down a fiber-optic cable to understand why it now costs pennies to send data that would have been billed at more than $100,000 just a few decades ago.
06: Sensing the World through Nanoengineering
Megapixel cameras on cell phones may seem miraculous, but nanoengineering promises far more powerful imaging systems. Quantum dots will give cameras much greater sensitivity and the ability to detect light across a broad range of invisible wavelengths, opening new applications for image processing.
07: Nanomedicine—DNA and Gold Nanoparticles
Begin a series of lectures with Dr. Kelley on nanoscience in biology. The building blocks of life, including DNA, are nanoscale objects, making ideal targets for nanotechnology diagnostic tools and disease treatments. As an example, see how gold nanoparticles are used to identify genetic mutations.
08: Nano and Proteins—Enzymes to Cholesterol
Gold nanoparticles attached to an antibody protein allow a simple pregnancy test. Discover that nanoparticles are also tools for mapping how cholesterol and other protein molecules enter cells.
09: Nanoparticles Detect Cancer in Living Organisms
Learn how metal nanoparticles called quantum dots can signal the presence of cancer cells inside the body. While still experimental, this technology may herald a breakthrough in noninvasive medical imaging.
10: Detecting Only a Few Molecules of a Disease
Turn to cancer diagnostic tools “in vitro”—outside the body. Professor Kelley discusses her own work on a system for disease diagnosis that uses nanomaterials layered on microelectronic chips. This research promises much more efficient detection of the molecules that signal cancer.
11: Nanomaterials That Seek and Destroy Disease
Explore three strategies for treating tumors. A photothermal approach places gold nanoparticles in a tumor and then irradiates the particles from an external source. A similar but more targeted technique tunes the radiation to a precise frequency, sparing surrounding tissues. Finally, learn how the gold nanoparticles themselves can be the tumor-killing agent.
12: How Nanomaterials Improve Drug Delivery
Drugs are administered by injection, inhalation, skin patches, or in pills. These methods deliver only a fraction of the medication to the needed areas, and many potentially useful biomolecules have no effective way to get to their targets. Discover that nanomaterials offer a solution to these problems.
13: Delivering Drugs with "Smart" Nanocapsules
Learn how nano-enabled drug delivery systems can target cells with greater potency and fewer side effects than traditional treatments can. Examples include protein nanoparticles and liposomes, which have already been approved for clinical use. Then examine some next-generation approaches.
14: Nanoscale Surgical Tools
Nanoscale surgical tools can make excisions with incredible precision, ensuring that when a cancerous tumor is removed, no malignant cells remain and no healthy cells are harmed. Explore this ongoing medical revolution, and discover the role of robotics in enhancing the surgeon’s skill.
15: Nanomaterials for Artificial Tissue
Regenerative medicine focuses on producing artificial substitutes that can restore or replace damaged tissues or organs. Learn how nanomaterials stimulate cell and tissue growth in the body. Also follow progress in generating artificial organs outside the body to help meet the demand for organ transplants.
16: How Nano Research Gets Done
Professors Kelley and Sargent introduce their research teams. Discover that nanotechnology is highly interdisciplinary. Chemists generate new materials. Physicists help understand those materials. Biologists put biomolecules and nanomaterials together. And engineers help turn basic discoveries into devices.
17: Nanomotifs—Building Blocks, Complex Structures
Professor Sargent takes a brief interlude to showcase the visual side of nanoengineering. View the complex structures that are built from nanoparts. Starting with nanoparticles, consider the many shapes that can be created, from nanotubes to supercrystals—structures that are not just useful but beautiful.
18: Using Nanotechnology to Capture Sunlight
Starting a sequence of lectures on nanotechnology and energy, Professor Sargent probes the physics of solar cells, which use semiconductors to generate an electric current from sunlight. Learn how nanotechnology is making this renewable energy source more efficient and cost-effective.
19: Photons to Electricity—Nano-Based Solar Cells
Explore further into nanoscale solar cell technology by looking at different techniques for capturing solar energy. Rigid silicon-based hardware may soon be a thing of the past, replaced by inexpensive products such as organic photovoltaics, which are composed of physically flexible organic polymers that can be applied like plastic sheeting.
20: Nanotechnology for Storing Energy
One of the challenges of renewable energy is that its hours of peak production may not correspond to times of peak demand, creating the problem of energy storage. Investigate some solutions that nanotechnology offers, including supercapacitors and a remarkable new class of batteries assembled by viruses.
21: Nanotechnology for Releasing Energy
Catalysts foster a chemical reaction without being consumed by the reaction, using and releasing energy with incredible efficiency. Explore this phenomenon at the nanoscale, seeing how nanomaterials can increase the surface area of a catalyst, which greatly improves its performance for a wide range of applications.
22: Energy's Holy Grail—Artificial Photosynthesis
The ultimate energy collection and storage system is photosynthesis. Nature does it with plants, but researchers are striving to attain the same result with nanotechnology—using sunlight to produce and store energy in the form of a fuel such as hydrogen.
23: Nanorobots and Nature’s Nanomachines
Learn how nanorobots that take over the world in science fiction usually defy the laws of physics, and survey concerns about the harm that nanomaterials can do. Look at nanovehicles built with buckeyballs for wheels, and then turn to nature’s nanomachines such as diatoms, which build astonishing structures at the molecular level. Explore ways that these tiny creatures may be more effective than nanorobots.
24: On the Horizon and in the Far Future
Close your exploration of nanotechnology by looking ahead at possible near- and long-term developments. One is a real “cloak of invisibility.” Then look back to revisit physicist Richard Feynman’s bold predictions. See how far we’ve come and discover what Feynman apparently overlooked.