You updated your password.

Reset Password

Enter the email address you used to create your account. We will email you instructions on how to reset your password.

Forgot Your Email Address? Contact Us

Reset Your Password

SHOW
SHOW

Algebra I

Learn or review all the concepts of first-year algebra-including variables, order of operations, and functions-with these lectures taught by a Professor of Mathematics.
Algebra I is rated 4.8 out of 5 by 156.
  • y_2025, m_1, d_14, h_4
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.42
  • cp_1, bvpage1
  • co_hasreviews, tv_8, tr_148
  • loc_en_CA, sid_1001, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.1
  • CLOUD, getAggregateRating, 43.08ms
  • REVIEWS, PRODUCT
Rated 5 out of 5 by from Don’t Panic!!! Professor Sellers struck me that he might be a fan of the Douglas Adams’s series of novels – “Hitchhiker’s Guide to the Galaxy”. He had a tendency to use this phrase or a similar phrases telling the viewer to chill a little, that the math problem was not as difficult as it first appeared, that we work through it together. I imagine he was doing so as I am supposing the target audience for this course would be folks struggling with algebra, especially at the high school level. I took this course as I had high school and college algebra literally 5 decades ago, and I wondered how much I remembered… more than I would have thought. I do wonder where a math teacher like Professor Sellers was when I was taking math in high school. I left that institution with a bit of a math phobia that has never completely left me despite obtaining a BS in Biology and later a degree in Computer Technologies (after I discovered that my BS in my beloved Biology was barely paying the bills). I spent a considerable time in both fields using math of one sort or another. All by the way of saying Professor Sellers is an excellent teacher. He makes sure that you understand the basics, before launching into the next segment of the class. He stated that the homework is an integral part of the course that you really need to do to get the most of it. He was right. I actually enjoyed the class, something that I cannot say I did with my math classes in either high school or college. One thing that was different was how much graphing he did. I do not remember doing this very much in any of my Algebra courses, but then again when I took Chemistry in high school we used a slide rule… Google it youngster. If you are struggling with the basics of Algebra look no further. If you are struggling with basic math concepts, check out Professor Seller’s course,” Fundamentals of Math”.
Date published: 2024-12-13
Rated 5 out of 5 by from Will add more as I go along in the course. Currently on Lesson 10 (slope-intercept form of the equation for a line) when I learnt this same topic about 20 years ago, I found it so difficult to even understand it fully. Today it is so different. Professor Sellers is so awesome, that he shows so many different ways to find the slope of the line, with the help of graphing, just from the data, just from pattern recognitions, no slope horizontal lines, undefinable slopes for vertical lines and so much more! When I was thinking that was all about it about slopes of the line, by the end of the lesson, he kicks it up a notch by saying there are far better equations or ways to work with even when the y-intercept is not given to us. Such an awesome teacher, I love him! All middle school students (before entering high school) should be given an opportunity to go through his courses. Fundamentals of Mathematics first, and then this course. Being able to tell the slope is 0, when all the y-axis values are same, or the slope is undefined when the x-axis values are same, or when the slope is positive then the line goes up left to right, and vice versa are such exciting things to learn. And last but not the least, being able to say y=n or y=-n when two or more y-axis values are same for a line are great things to learn to go forward to learn advanced mathematics with confidence. Hats off to Professor Sellers!
Date published: 2024-11-23
Rated 3 out of 5 by from I simply cannot figure out how the slope-intercept problems work. For example, Dr. Sellers insists we can use any two points to solve the problems, but I can only get the correct answer (y=-3x+2) if I use the points listed in the solution (5,-13) and (0,2). The points (-4,10) and (0,2) give y=-2x+2. The points (-4, 10) and (5,-13) return a slope of -23/9. Very confusing.
Date published: 2024-10-24
Rated 5 out of 5 by from Very clear instruction If my algebra teacher back in the day (1980s) had explained things this clearly and sensibly, I would not have grown into an adult who dreads math. After watching these lectures, I feel like I have a much better grasp on things that always seemed very nebulous and theoretical in school, and it makes me interested in looking at other math course offerings instead of my usual diet of social sciences and history.
Date published: 2024-09-24
Rated 5 out of 5 by from Excellent course This is an excellent course. Professor Sellers does a great job. His delivery was first class, he always spoke directly into the camera, and he never missed a beat. The material covered was great, and Dr. Sellers worked through lots of good example problems. I am looking forward to his Algebra II class.
Date published: 2024-09-16
Rated 5 out of 5 by from Great course on Algebra 1! I highly recommend this course for people who would like to refresh their memory on the subject! The professor is very knowledgeable and explains algebra very well. Very easy to follow!
Date published: 2024-08-12
Rated 5 out of 5 by from Easy road to follow I wish I had a teacher of mathematics like this when I was at school. Great course. Clear instructions with easy to follow examples.
Date published: 2024-06-11
Rated 5 out of 5 by from Excellemnt professor I had left a review after the second or third lesson. I want to repeat: This teacher is excellent, IF every beginning Algebra student had Dr. Sellers, he/she would come away knowing beginning Algebra. He explains everything slowly and thoroughly. And he is so patient and understanding. He never puts anyone down, but encourages everyone to keep working and following along, I am a long ago math teacher with a Masters in Math, but I thoroughly enjoyed his teaching, I wanted to review Algebra in order to take some of your advanced math courses. I hope Dr, Sellers is teaching some of them. Thank you for having great instructors!
Date published: 2024-02-23
  • y_2025, m_1, d_14, h_4
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.42
  • cp_1, bvpage1
  • co_hasreviews, tv_8, tr_148
  • loc_en_CA, sid_1001, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.1
  • CLOUD, getReviews, 4.8ms
  • REVIEWS, PRODUCT

Overview

Algebra I is an entirely new course designed to meet the concerns of both students and their parents. These 36 accessible lectures make the concepts of first-year algebra-including variables, order of operations, and functions-easy to grasp. For anyone wanting to learn algebra from the beginning, or for anyone needing a thorough review, Professor James A. Sellers will prove to be an inspirational and ideal tutor. Open yourself up to the world of opportunity that algebra offers by making the best possible start on mastering this all-important subject.

About

James A. Sellers

If you are shaky on basic math facts, algebra will be harder for you than it needs to be. Spend every day reviewing flashcards of math facts, and you will be surprised at how much better at math you are!

INSTITUTION

University of Minnesota Duluth

Dr. James A. Sellers is Professor of Mathematics at the University of Minnesota Duluth. He earned his B.S. in Mathematics from The University of Texas at San Antonio and his Ph.D. in Mathematics from Penn State. Professor Sellers has received the Teresa Cohen Mathematics Service Award from the Penn State Department of Mathematics and the Mathematical Association of America Allegheny Mountain Section Mentoring Award. More than 60 of Professor Sellers's research articles on partitions and related topics have been published in a wide variety of peer-reviewed journals. In 2008, he was a visiting scholar at the Isaac Newton Institute at the University of Cambridge. Professor Sellers has enjoyed many interactions at the high school and middle school levels. He has served as an instructor of middle-school students in the TexPREP program in San Antonio, Texas. He has also worked with Saxon Publishers on revisions to a number of its high-school textbooks. As a home educator and father of five, he has spoken to various home education organizations about mathematics curricula and teaching issues.

By This Professor

Mastering the Fundamentals of Mathematics
854
Algebra II
854
Algebra I
854
Algebra I

Trailer

An Introduction to the Course

01: An Introduction to the Course

Professor Sellers introduces the general topics and themes for the course, describing his approach and recommending a strategy for making the best use of the lessons and supplementary workbook. Warm up with some simple problems that demonstrate signed numbers and operations.

33 min
Order of Operations

02: Order of Operations

The order in which you do simple operations of arithmetic can make a big difference. Learn how to solve problems that combine adding, subtracting, multiplying, and dividing, as well as raising numbers to various powers. These same concepts also apply when you need to simplify algebraic expressions, making it critical to master them now.

30 min
Percents, Decimals, and Fractions

03: Percents, Decimals, and Fractions

Continue your study of math fundamentals by exploring various procedures for converting between percents, decimals, and fractions. Professor Sellers notes that it helps to see these procedures as ways of presenting the same information in different forms.

30 min
Variables and Algebraic Expressions

04: Variables and Algebraic Expressions

Advance to the next level of problem solving by using variables as the building blocks to create algebraic expressions, which are combinations of mathematical symbols that might include numbers, variables, and operation symbols. Also learn some tricks for translating the language of problems (phrases in English) into the language of math (algebraic expressions).

30 min
Operations and Expressions

05: Operations and Expressions

Discover that by following basic rules on how to treat coefficients and exponents, you can reduce very complicated algebraic expressions to much simpler ones. You start by using the commutative property of multiplication to rearrange the terms of an expression, making combining them relatively easy.

31 min
Principles of Graphing in 2 Dimensions

06: Principles of Graphing in 2 Dimensions

Using graph paper and pencil, begin your exploration of the coordinate plane, also known as the Cartesian plane. Learn how to plot points in the four quadrants of the plane, how to choose a scale for labeling the x and y axes, and how to graph a linear equation.

28 min
Solving Linear Equations, Part 1

07: Solving Linear Equations, Part 1

In this lesson, work through simple one- and two-step linear equations, learning how to isolate the variable by different operations. Professor Sellers also presents a word problem involving a two-step equation and gives tips for how to solve it.

30 min
Solving Linear Equations, Part 2

08: Solving Linear Equations, Part 2

Investigating more complicated examples of linear equations, learn that linear equations fall into three categories. First, the equation might have exactly one solution. Second, it might have no solutions at all. Third, it might be an identity, which means every number is a solution.

29 min
Slope of a Line

09: Slope of a Line

Explore the concept of slope, which for a given straight line is its rate of change, defined as the rise over run. Learn the formula for calculating slope with coordinates only, and what it means to have a positive, negative, and undefined slope.

28 min
Graphing Linear Equations, Part 1

10: Graphing Linear Equations, Part 1

Use what you've learned about slope to graph linear equations in the slope-intercept form, y = mx + b, where m is the slope, and b is the y intercept. Experiment with examples in which you calculate the equation from a graph and from a table of pairs of points....

31 min
Graphing Linear Equations, Part 2

11: Graphing Linear Equations, Part 2

A more versatile approach to writing the equation of a line is the point-slope form, in which only two points are required, and neither needs to intercept the y axis. Work through several examples and become comfortable determining the equation using the line and the line using the equation

30 min
Parallel and Perpendicular Lines

12: Parallel and Perpendicular Lines

Apply what you've discovered about equations of lines to two very special types of lines: parallel and perpendicular. Learn how to tell if lines are parallel or perpendicular from their equations alone, without having to see the lines themselves. Also try your hand at word problems that feature both types of lines.

31 min
Solving Word Problems with Linear Equations

13: Solving Word Problems with Linear Equations

Linear equations reflect the behavior of real-life phenomena. Practice evaluating tables of numbers to determine if they can be represented as linear equations. Conclude with an example about the yearly growth of a tree. Does it increase in size at a linear rate?

31 min
Linear Equations for Real-World Data

14: Linear Equations for Real-World Data

Investigating more real-world applications of linear equations, derive the formula for converting degrees Celsius to Fahrenheit; determine the boiling point of water in Denver, Colorado; and calculate the speed of a rising balloon and the time for an elevator to descend to the ground floor.

30 min
Systems of Linear Equations, Part 1

15: Systems of Linear Equations, Part 1

When two lines intersect, they form a system of linear equations. Discover two methods for finding a solution to such a system: by graphing and by substitution. Then try out a real-world example, involving a farmer who wants to plant different crops in different proportions.

30 min
Systems of Linear Equations, Part 2

16: Systems of Linear Equations, Part 2

Expand your tools for solving systems of linear equations by exploring the method of solving by elimination. This technique allows you to eliminate one variable by performing addition, subtraction, or multiplication on both sides of an equation, allowing a straightforward solution for the remaining variable.

32 min
Linear Inequalities

17: Linear Inequalities

Shift gears to consider linear inequalities, which are mathematical expressions featuring a less than sign or a greater than sign instead of an equal sign. Discover that these kinds of problems have some very interesting twists, and they come up frequently in business applications.

31 min
An Introduction to Quadratic Polynomials

18: An Introduction to Quadratic Polynomials

Transition to a more complex type of algebraic expression, which incorporates squared terms and is therefore known as quadratic. Learn how to use the FOIL method (first, outer, inner, last) to multiply linear terms to get a quadratic expression.

31 min
Factoring Trinomials

19: Factoring Trinomials

Begin to find solutions for quadratic equations, starting with the FOIL technique in reverse to find the binomial factors of a quadratic trinomial (a binomial expression consists of two terms, a trinomial of three). Professor Sellers explains the tricks of factoring such expressions, which is a process almost like solving a mystery.

31 min
Quadratic Equations-Factoring

20: Quadratic Equations-Factoring

In some circumstances, quadratic expressions are given in a special form that allows them to be factored quickly. Focus on two such forms: perfect square trinomials and differences of two squares. Learning to recognize these cases makes factoring easy.

32 min
Quadratic Equations-The Quadratic Formula

21: Quadratic Equations-The Quadratic Formula

For those cases that defy simple factoring, the quadratic formula provides a powerful technique for solving quadratic equations. Discover that this formidable-looking expression is not as difficult as it appears and is well worth committing to memory. Also learn how to determine if a quadratic equation has no solutions.

30 min
Quadratic Equations-Completing the Square

22: Quadratic Equations-Completing the Square

After learning the definition of a function, investigate an additional approach to solving quadratic equations: completing the square. This technique is very useful when rewriting the equation of a quadratic function in such a way that the graph of the function is easily sketched.

31 min
Representations of Quadratic Functions

23: Representations of Quadratic Functions

Drawing on your experience solving quadratic functions, analyze the parabolic shapes produced by such functions when represented on a graph. Use your algebraic skills to determine the parabola's vertex, its x and y intercepts, and whether it opens in an upward "cup" or downward in a "cap."

29 min
Quadratic Equations in the Real World

24: Quadratic Equations in the Real World

Quadratic functions often arise in real-world settings. Explore a number of problems, including calculating the maximum height of a rocket and determining how long an object dropped from a tree takes to reach the ground. Learn that in finding a solution, graphing can often help.

32 min
The Pythagorean Theorem

25: The Pythagorean Theorem

Because it involves terms raised to the second power, the famous Pythagorean theorem, a2 + b2 = c2, is actually a quadratic equation. Discover how techniques you have previously learned for analyzing quadratic functions can be used for solving problems involving right triangles....

31 min
Polynomials of Higher Degree

26: Polynomials of Higher Degree

Most of the expressions you've studied in the course so far have been polynomials. Learn what characterizes a polynomial and how to recognize polynomials in both algebraic functions and in graphical form. Professor Sellers defines several terms, including the degree of an equation, the leading coefficient, and the domain.

31 min
Operations and Polynomials

27: Operations and Polynomials

Much of what you've learned about linear and quadratic expressions applies to adding, subtracting, multiplying, and dividing polynomials. Discover how the FOIL operation can be extended to multiplying large polynomials, and a version of long division works for dividing one polynomial by another.

30 min
Rational Expressions, Part 1

28: Rational Expressions, Part 1

When one polynomial is divided by another, the result is called a rational function because it is the ratio of two polynomials. These functions play an important role in algebra. Learn how to add and subtract rational functions by first finding their common divisor.

30 min
Rational Expressions, Part 2

29: Rational Expressions, Part 2

Continuing your exploration of rational expressions, try your hand at multiplying and dividing them. The key to solving these complicated-looking equations is to proceed one step at a time. Close the lesson with a problem that brings together all you've learned about rational functions.

32 min
Graphing Rational Functions, Part 1

30: Graphing Rational Functions, Part 1

Examine the distinctive graphs formed by rational functions, which may form vertical or horizontal curves that aren't even connected on a graph. Learn to identify the intercepts and the vertical and horizontal asymptotes of these fascinating curves.

31 min
Graphing Rational Functions, Part 2

31: Graphing Rational Functions, Part 2

Sketch the graphs of several rational functions by first calculating the vertical and horizontal asymptotes, the x and y intercepts, and then plotting several points in the function. In the final exercise, you must simplify the expression in order to extract the needed information.

32 min
Radical Expressions

32: Radical Expressions

Anytime you see a root symbol-for example, the symbol for a square root-then you're dealing with what mathematicians call a radical. Learn how to simplify radical expressions and perform operations on them, such as multiplication, division, addition, and subtraction, as well as combinations of these operations.

32 min
Solving Radical Equations

33: Solving Radical Equations

Discover how to solve equations that contain radical expressions. A key step is isolating the radical term and then squaring both sides. As always, it's important to check the solution by plugging it into the equation to see if it makes sense. This is especially true with radical equations, which can sometimes yield extraneous, or invalid, solutions.

32 min
Graphing Radical Functions

34: Graphing Radical Functions

In previous lessons, you moved from linear, quadratic, and rational functions to the graphs that display them. Now do the same with radical functions. For these, it's important to pay attention to the domain of the functions to ensure that negative values are not introduced beneath the root symbol.

32 min
Sequences and Pattern Recognition, Part 1

35: Sequences and Pattern Recognition, Part 1

Pattern recognition is an important and fascinating mathematical skill. Investigate two types of number patterns: geometric sequences and arithmetic sequences. Learn how to analyze such patterns and work out a formula that predicts any term in the sequence

32 min
Sequences and Pattern Recognition, Part 2

36: Sequences and Pattern Recognition, Part 2

Conclude the course by examining more types of number sequences, discovering how rich and enjoyable the mathematics of pattern recognition can be. As in previous lessons, employ your reasoning skills and growing command of algebra to find order-and beauty-where once all was a confusion of numbers.

33 min